Chapter 6 Methods

Objectives

= To define methods with formal parameters (§6.2).

= To invoke methods with actual parameters (i.e., arguments) (§6.2).
= To define methods with a return value (§6.3).

= To define methods without a return value (§6.4).

= To pass arguments by value (§6.5).

= To develop reusable code that is modular, easy to read, easy to debug, and
easy to maintain (§6.6).

= To write a method that converts hexadecimals to decimals (§6.7).
= To use method overloading and understand ambiguous overloading (§6.8).
= To determine the scope of variables (§6.9).

= To apply the concept of method abstraction in software development
(§6.10).

= To design and implement methods using stepwise refinement (§6.10).

Defining Methods

public class TestMax {

J¥* Main method */

puh]Hc static void main{(5tring[] args) {
int 1 = 5;
int j = 2;
int k = max(i, j);
System.out.printin("The maximum of " + i +

Tand "+ 3+ " s "+ k)

n

¥

/** Return the max of two numbers */
public static int max(int numl, int num) {
int result;

if (numl > numZ)
result = numl;
else
result = numd;

return result;

Defining Methods

A method iIs a collection of statements that are
grouped together to perform an operation.

Define a method Invoke a method
int z = max(x, Vy);
public static int max (int numl, int num2) { T~‘T

actual parameters

int result; (arguments)

if (numl > num?2)

result = numl;
else
result = num?2;

return result;

}

Defining Methods

A method iIs a collection of statements that are
grouped together to perform an operation.

Define a method

modifier

method
header

body if (numl
result

else
result

return value

—>» public static int

int result;

>

type

max (int numl, int num?2) | {

method formal
/ name parameters
=~
2

=

numz2)
numl;

num?2;

0

parameter list

method
signature

return result; €——— return value

Invoke a method

int z = max(x, V),

()

actual parameters
(arguments)

Method Signature

Method signature is the combination of the method name and the

parameter list.

Define a method

3 return value method formal
modifier type name parameters
D ~~ \
method bli tati PN 2 i nt kl int X >
header —>» public static int|max (int numl, int num2) | {
int result; T
method —_)
body if (numl > num?) parameter list
result = numl;
else method

return result; €——— return value

Invoke a method

int z = max(x, V),

()

actual parameters
(arguments)

Formal Parameters

The variables defined in the method header are known as
formal parameters.

Define a method Invoke a method
B return value method formal
modifier type name parameters
) k/ int z = max(x, y);
hme‘;tdé’f —>»public static int|max (int jnuml} int |[num2)) | { 1« 1«
. . actual parameters
ethod int result; T (arguments)
bod > parameter list
y if (numl > num?2)
result = numl;
else method
result = num?2Z; signature

return result; €——— return value

Actual Parameters

When a method is invoked, you pass a value to the parameter. This
value Is referred to as actual parameter or argument.

Define a method Invoke a method
B return value method formal
modifier type name parameters
) k/ k/ \ int z = max(x, vy
hmeztd:rd —>» public static int|max (int numl, int num?2) | { T T
. . actual parameters
ethod int result; T (arguments)
bod > parameter list
y if (numl > num?2)
result = numl;
else method
result = num2; signature

return result; €——— return value

Return Value Type

A method may return a value. The returnValueType is the data type
of the value the method returns. If the method does not return a
value, the returnValueType is the keyword void. For example, the
returnValueType in the main method is void.

Define a method Invoke a method
3 return value method formal
modifier type name parameters
k/ t/ int z = max(x, V),
hme‘;tg:f —»public static fint|max (int numl, int num2) | { 1« 1«
. . actual parameters
ethod int result; T (arguments)
bod 3 parameter list
y if (numl > num?2)
result = numl;
else method
result = num?2; signature

return result|; €—— return value

Calling Methods

pass the value of i

fevererestetatasaassaseae s as e s seee et e et et et e s e tasaeses s aeeeaeaeseaeese e esenasasaneseneneeemnnnnn. pass the value of j

--

weee

,,,,,,,,,,,,,,,,,,,,,,,,

<
<

public staticfvoiﬁ main (String[] args) { .J’4nmdic static int max(int numl, int num2) {

int 1 = 5; § i
int 3 = 2; § i et
int k = max (i, 9) ;(
System.out.println(T,
"The maximum between " + 1 ¥,
" and " + j + " 9is " + k),’ e,
} .

int result;

if (numl > num2)

result = numl;
else
result = num2;

return result;

10

CAUTION

A return statement is required for a value-returning method. The
method shown below in (a) is logically correct, but it has a
compilation error because the Java compiler thinks it possible that
this method does not return any value.

public static int sign(int n)
if (n > 0)
return 1;
else if (n == 0)
return 0O;
else if (n < 0)
return -1;

Should be
—_—

(@)

public static int sign(int n) {
if (n > 0)
return 1;
else if (n == 0)
return O;
else
return —1;

(b)

To fix this problem, delete if (n < 0) in (a), so that the compiler will
see a return statement to be reached regardless of how the if

statement is evaluated.

11

Reuse Methods from Other Classes

NOTE: One of the benefits of methods is for reuse. The max
method can be invoked from any class besides TestMax. If
you create a new class Test, you can invoke the static method
max using ClassName.methodName (e.g., TestMax.max).

12

Call Stacks

Each time a method is invoked, the system creates an activation record (also called
an activation frame) that stores parameters and variables for the method and places
the activation record in an area of memory known as a call stack. A call stack is
also known as an execution stack, runtime stack, or machine stack, and it is often
shortened to just “the stack.” When a method calls another method, the caller’s
activation record is kept intact, and a new activation record is created for the new
method called. When a method finishes its work and returns to its caller, its
activation record is removed from the call stack.

Activation record for Activation record for
the max method the max method
result: result: St==temommm e -=;
num2: 2 <= num2: 2 I
nhuml: 5 -(--l--: numl: 5 :
Activation record Activation record for : : Activation record for Activation record :
for the ma1n method| | the ma1n method : 1 | the main method for the ma1n method | 1
k: k: ¥ k: k: 5|« |[Stackisempty
Jj: 2 J: 2==1 Jr 2 J: 2
1: 5 1! Spm=mm=l 1: 5 1: 5
(a) The main (b) The max (c) The max method (d) The max method is (e) The main
method is invoked. method is invoked. is being executed. finished and the return method 1s finished.

value is sent to k.

13

Trace Call Stack

public static void main(Strin {
[int i = 5;
int §J = 2;
int k = max (i, 7J);

System.out.println(
"The maximum between " + i +
1) and 1A} _|_ j + " iS " _|_ k) ,.

public static int max(int numl, int num2)
int result;

if (numl > num?2)

result = numl;
else
result = num?2;

return result;

}

{

athod

14

Trace Call Sta

ck

public static void main(String[] ar

int 1 = 5;
[int 7 = 27 ~
int k = max (i, 7J);
System.out.println(

"The maximum between " + i +

" and " _|_ j + " iS " _|_ k) ,.

public static int max(int numl,
int result;

if (numl > num?2)

result = numl;
else
result = num?2;

return result;

}

int num?2)

{

i
a1 N

athod

15

Trace Call Stack

public static void main (Stxs args) {
int i = 5;
int] =_2%
[I0C K= max(i, 3);
System.out.println
"The maximum between " + 1
w and " _|_ j + mw iS "w _|_ k); -
} lired Torthe-
roeerreerrrerl0d \\\\\\\“\~\\\\\\\$

public static int max (int numl, int num2) { k:
int result;

i
a1 N

if (numl > num?2)
result numl;

else
result

numz; athod

return result;

}

Trace Call Stack

public static void main (String[]
int 1 = 5;
int §J = 2;
int k = max(x; J)7 .
System.out.println(
"The maximum between " + i |+

args)

" and " _|_ j + n iS " _|_ k) ,.

} ired for the
I R rroen0d
public static int max (int numl, int num2) { k:
int result; J: 2
;5
if (numl > num?2)
result = numl;
else
result = num?2; sthod
return result;
}

17

Trace Call Stack

public static void main(String[] args) {
int i = 5;
int j = 2;
int k = max (i, 7J);

System.out.println(
"The maximum between " + i +
1) and 1A} _|_ j + " iS " _|_ k) ,.

malin rmetn

public static int|max(int numl,

}

int num?2)

int result;

if (numl > num?2)
result = numl;
else
result = num?2;

return result;

1is

18

Trace Call Stack

public static void main(String[] args) {
int i = 5;
int j = 2;
int k = max (i, 7J);

System.out.println(
"The maximum between " + i +
1) and 1A} _|_ j + " iS " _|_ k) ,.

[TTar Mmewoa

public static int max(int numl, int num2
[1nt result; —

if (numl > num?2)
result numl;

else
result

num?2 ;]
1is
return result;

}

Trace Call Stack

public static void main (String[]
int 1 = 5;
int 3 = 2;
int k = max (i, 7J);

System.out.println(
"The maximum between " + i +
1) and 1A} _|_ j + " iS " _|_ k) ,.

args) |

[TTar Mmewoa

public static int max(int numl,
int result;

int num?2

|if (numl > num?)

result = numl;
else
result = num?2;

return result;

}

1is

20

Trace Call Stack

public static void main(String[] args) {

int 1 = 5;
int §J = 2;
int k = max (i, 7J);

System.out.println(

"The maximum between " + i +

" and " _|_ j + n iS " _|_ k) ,.

[TTar Mmewoa

public static int max(int numl, int num2)

}

int result;

if (numl > num?)

| result = numl; —
else
result = num2;

return result;

1is

21

Trace Call Stack

public static void main(String[] args) {

int 1 = 5;
int §J = 2;
int = max (i, J);

System.out.println(
"The maximum between " + 1 +
1) and 1A} _|_ j + " iS " _|_ k) ,.

\ [mewog

public static int max(int numl, int num

}

int result;

if (numl numz2)
result numl;
else
result num?2 ;
| return result; f—

22

Trace Call Stack

public static void main (String[]
int 1 = 5;
int 3 = 2;
int k = max (i, 7J);

args) |

System.out.println (
"The maximum between " + i +
" and mw + j + w j_S mw + k) ;

public static int max(int numl,
int result;

if (numl > num?2)

result = numl;
else
result = num?2;

return result;

}

ired for the

freveeers rrroariO0
int num2) { K:5
J: 2
i:5

athod

23

void Method Example

public class TestVoidMethod {
public static void main(String[] args) {
System.out.print("The grade 1is ");
printGrade(78.5);

System.out.print("The grade 1is ");
printGrade(59.5);

¥

public static void printGrade(double score) {
if (score >= 90.0) {
System.out.printin("A");
¥
else if (score »= 80.0) {
System.out.printin('E");
¥
else if (score == 70.0) {
System.out.printin('C");
}
else if (score >= 60.0) {
System.out.printin('D");
}
else {
System.out.printin('F');
}
I
¥

Passing Parameters

public static void nPrintIn(5tring message, int n) {
for (int 1 = 0; 1 < n; i++)
System.out.printin({message);

Youcanuse nPrintIn("Hello", 3) toprint Hel1o three times. The nPrintIn("Hello",
3) statement passes the actual string parameter He'l 1o to the parameter message, passes 3 to
n, and prints He'l1 o three times. However, the statement nPrintIn(3, "Hello") would be
wrong. The data type of 3 does not match the data type for the first parameter, message, nor
does the second arsument, Hel 1o, match the second parameter, n.

25

Pass by Value

When you invoke a method with an
argument, the value of the argument is
passed to the parameter. This Is referred to
as pass-by-value. If the argument iIs a
variable rather than a literal value, the value
of the variable is passed to the parameter.
he variable Is not affected, regardless of
the changes made to the parameter inside
the method

26

Pass by Value

1 public class Increment {

2 public static void main(String[] args) {

3 int x = 1;

4 System.out.printin("Before the call, x is
5 increment(x):;

6 System.out.printin("After the call, x is "
7 Iy

8

g public static void increment(int n) {

10 A++
11 System.out.printin("n inside the method is "
12 1
13 }

+ X%

+)3

+ nj;

Before the call, x is 1
n inside the method is 2
After the call, x is 1

27

Pass by Value

WD 00 =] LA fe i P e

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

public class TestPassByValue {
SE* Main method */
public static void main(5tring[] args) {

¥

S/ Declare and initialize variables

int numl = 1;

int numZ = 2;

System.out.printin("Before invoking the swap method, numl is " +
numl + " and numZ is " + num2);

// Invoke the swap method to attempt to swap two wvariables
swap(numl, numZ); false swap
System.out.printin("After invoking the swap method, numl 1is " +

numl + " and numZ s 7+ numd);

/** Swap two variables */
public static void swap(int nl, int nd) {

System.out.printin("\tInside the swap method");
System.out.printin("\t\tBefore swapping, nl is " + nl

+ and n2 is " + n2);

// Swap nl with nZ
int temp = nl;

nl = nd;

nZ = temp;

System.out.printin("\t\tAfter swapping, nl is " + nl

+ " and n2 is " + n2);

28

Pass by Value, cont.

The values of numl and hum?2 are
passed to n1 and n2.

Activation record for
the swap method

temp: ,
n2: 2 <=y
nl:l'*1ﬁ

I
Activation record for Activation record for : 1
the main method the main method : :
I

1
hum2: 2 NUM2: 2 == :
numl: 1 numl: 1lm==-

The main method
is invoked.

The swap method
is invoked.

The values for nl and n2 are

Activation record for
the swap method

temp: 1
n2: 1
nl: 2

Activation record for
the main method

humz2: 2
huml: 1

swapped, but it does not affect
numl and num?2.

Activation record for
the main method

num2: 2
numl: 1

Stack is empty

The swap method
is executed.

The swap method
is finished.

The main method
is finished.

29

Overloading Methods

 Overloading methods enables you to define the methods with the same
name as long as their signatures are different.

* The max method that was used earlier works only with the int data type.
But what if you need to determine which of two floating-point numbers
has the maximum value? The solution is to create another method with
the same name but different parameters, as shown in the following
code:

public static double max(double num1, double num?2) {
if (num1>num?2)

return num1l;
else

return num2;

}

30

Ambiguous Invocation

* The Java compiler determines which method to use based on the method
signature.

* Sometimes there may be two or more possible matches for an invocation of
a method, but the compiler cannot determine the most specific match. This
is referred to as ambiguous invocation. Ambiguous invocation is a compile
error.

31

Ambiguous Invocation

public class AmbiguousOverloading {
public static void main(5tring[] args) {
System.out.printin{max(l, Z2));

¥

public static double max(int numl, double numd) {
if (numl > num2)
return numl;
else
return num;

}

public static double max(double numl, int num2) {
if (numl > num2)
return numl;
else
return num;

¥
}

Both max(int, double) and max(double, int) are possible candidates to match
max(1, 2). Because neither is better than the other, the invocation is ambiguous,
resulting in a compile error.

32

Scope of Local Variables

A local variable: a variable defined inside a
method.

Scope: the part of the program where the
variable can be referenced.

The scope of a local variable starts from its
declaration and continues to the end of the
block that contains the variable. A local
variable must be declared before it can be
used.

33

Scope of Local Variables, cont.

You can declare a local variable with the
same name multiple times in different non-
nesting blocks in a method, but you cannot

declare a local variable twice in nested
blocks.

34

Scope of Local Variables, cont.

A variable declared in the initial action part of a for loop
header has its scope in the entire loop. But a variable
declared inside a for loop body has its scope limited in the

loop body from its declaration and to the end of the block
that contains the variable.

public static void methodl () {

— for (= 1; 1 < 10; i++) |

The scope of 1—Sm

The scope 0f] —3

35

Scope of Local Variables, cont.

It is fine to declare i in two
non-nesting blocks

public static void methodl () {
int x = 1;
int y = 1;
T for = 1; 1 < 10; i++)
X + 1,
}
\\ —for (= 1; 1 < 10; 1i++)
y += 1i;
_}
}

{

{

It is wrong to declare i in
two nesting blocks

public static void method?2

— _ 1,
int sum = 0;
for (= 1; i < 10;
sum += 1;
\\ }
_)

() A

i++)

36

Scope of Local Variables, cont.

Fine with no errors

37

Scope of Local Variables, cont.

With errors

38

Method Abstraction

You can think of the method body as a black box that contains the detailed
implementation for the method.

Optional arguments Optional return
for Input value

L

‘ Method Header ‘

Black Box

39

Benefits of Methods

« Write a method once and reuse It anywhere.

 Information hiding. Hide the implementation
from the user.

« Reduce complexity.

40

Assignment

By use of Methods, write Java programs to find out the

area of;
1. Circle
2. Triangle

The program should prompt the user to enter for example
the Length, Height and or Radius then goes ahead to

display the area of the object respectively.

41

Case Study: Generating Random Characters,
cont.

Now let us consider how to generate a random lowercase letter. The Unicode
for lowercase letters are consecutive integers starting from the Unicode for
'a’, then for 'b', 'c', ..., and 'z'. The Unicode for 'a' is

(int)'a’
So, a random integer between (int)'a’' and (int)'z' is

(int)((int)'a' + Math.random() * ((int)'z' - (int)'a' + 1)

42

Case Study: Generating Random Characters,
cont.

As discussed in Chapter 2, all numeric operators can be applied to the char
operands. The char operand is cast into a number if the other operand is a
number or a character. So, the preceding expression can be simplified as
follows:

'a' + Math.random() * ('z'-'a' + 1)

So a random lowercase letter is
(char)('a'+ Math.random() * ('z'-'a' + 1))

43

Case Study: Generating Random Characters,
cont.

To generalize the foregoing discussion, a random
character between any two characters chl and ch2 with
chl < ch2 can be generated as follows:

(char)(chl + Math.random() * (ch2 — chl + 1))

44

The RandomCharacter Class

// RandomCharacter.java: Generate random characters

public class RandomCharacter ({
/** Generate a random character between chl and ch2 */
public static char getRandomCharacter (char chl, char ch2) {

return (char) (chl + Math.random() * (ch2 - chl + 1));

/** Generate a random lowercase letter */
public static char getRandomLowerCaselLetter () ({

return getRandomCharacter('a', 'z');

/** Generate a random uppercase letter */
public static char getRandomUpperCaseletter () {

return getRandomCharacter('A', 'Z2');

/** Generate a random digit character */
public static char getRandomDigitCharacter () {

return getRandomCharacter('0', '9');

/** Generate a random character */
public static char getRandomCharacter () {

return getRandomCharacter ('\u0000', '\uFFFF');

The TestRandomCharacter Class

1 public class TestRandomCharacter {

2 J** Main method */

3 public static void main(5tring[] args) {

4 final int NUMBER_OF _CHARS = 175;

5 final int CHARS_PER_LINE = 25;

6

7 // Print random characters between 'a' and 'z', 25 chars per Tline
8 for (int i = 0; i < NUMBER_OF_CHARS; i++) {

9 char ch = RandomCharacter.getRandomLowerCaselLetter();

10 if ((1 + 1) % CHARS_PER_LINE == 0)

11 System.out.printin{ch);
12 else
13 System.out.print(ch);
14 }
15 } I
16 }

gmjsohezfkgtazqgmswfclrao
pnrunulnwmazt]fjedmpchcif
lalgdgivxkxpbzul rmgmbhikr
1bnrjlsopfxahssqghwuuljvbe
xbhdotzhpehbgmuwsfktwsoli
cbuwkzgxpmtzihgatdslvbwbz
bfesok lwbhnooygiigzdxugni

46

	Slide 1: Chapter 6 Methods
	Slide 2: Objectives
	Slide 3: Defining Methods
	Slide 4: Defining Methods
	Slide 5: Defining Methods
	Slide 6: Method Signature
	Slide 7: Formal Parameters
	Slide 8: Actual Parameters
	Slide 9: Return Value Type
	Slide 10: Calling Methods
	Slide 11: CAUTION
	Slide 12: Reuse Methods from Other Classes
	Slide 13: Call Stacks
	Slide 14: Trace Call Stack
	Slide 15: Trace Call Stack
	Slide 16: Trace Call Stack
	Slide 17: Trace Call Stack
	Slide 18: Trace Call Stack
	Slide 19: Trace Call Stack
	Slide 20: Trace Call Stack
	Slide 21: Trace Call Stack
	Slide 22: Trace Call Stack
	Slide 23: Trace Call Stack
	Slide 24: void Method Example
	Slide 25: Passing Parameters
	Slide 26: Pass by Value
	Slide 27: Pass by Value
	Slide 28: Pass by Value
	Slide 29: Pass by Value, cont.
	Slide 30: Overloading Methods
	Slide 31: Ambiguous Invocation
	Slide 32: Ambiguous Invocation
	Slide 33: Scope of Local Variables
	Slide 34: Scope of Local Variables, cont.
	Slide 35: Scope of Local Variables, cont.
	Slide 36: Scope of Local Variables, cont.
	Slide 37: Scope of Local Variables, cont.
	Slide 38: Scope of Local Variables, cont.
	Slide 39: Method Abstraction
	Slide 40: Benefits of Methods
	Slide 41: Assignment
	Slide 42: Case Study: Generating Random Characters, cont.
	Slide 43: Case Study: Generating Random Characters, cont.
	Slide 44: Case Study: Generating Random Characters, cont.
	Slide 45: The RandomCharacter Class
	Slide 46: The TestRandomCharacter Class

